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Machine Learning Algorithms
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Decision Tree and Classification
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Decision Tree and Regression
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Regression and Decision Trees
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Underfit, Overfit, Optimal Fit
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Decision Tree

Approaches
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Decision Tree, Node Types

ROOT Node J

Branch/ Sub-Tree

Splitting
Branches

[ Decision Node ]

Internal
Node

Internal
Node

[ Terminal Node ] [ Decision Node ] [ Terminal Node ] [ Terminal Node J

Branches Branches

: Terminal Node
[ Terminal Node ] [ J Leaf Leaf Leaf Leaf

Node Node Node Node

Note:- A is parent node of B and C.

(a)

Google Images, Internet



Node Types
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Pros and Cons: Decision Trees

Decision Tree Pros and Cons

Pros and cons of decision tree analysis

Pros Cons

* No data assumptions * No extrapolation

* Non-linear * Need substantial amount of data

* Discontinuous
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Offers a clear
method for you to

make decisions.

Efficient

Requires little time
and few resources

for you to create.

Flexible

Allows you to add
decisions to the tree

Complex

Can become
complex if you add
too many decisions.

Unstable

Can become
unstable if you
change your data.

Risky
Can become risky
if you don’t analyze
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Decision Trees vs Random Forest

Decision Tree

Random Forest

Interpretability

Easy to interpret

Hard to interpret

Accuracy Accuracy can vary Highly accurate
Overfitting Likely to overfit data Unlikely to overfit data
Outliers Can be highly affected by outliers Robust against outliers

Computation

Quick to build

Slow to build (computationally intensive)
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Random Forest
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Random Forest
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Class A B C
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Random Forest Algorithms
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Bagging, Boosting, Stacking

Bagging Boosting

Reduce Variance Reduce Bias Improve Accuracy
Base Learner Types Homogeneous Homogeneous Heterogeneous
Base Learner Training Parallel Sequential Meta Model
Max Voting,

Aggregation

Averaging Weighted Averaging Weighted Averaging
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Ensemble Methods

Bagging Ensemble Method Boosting Ensemble Method

Google Images, Internet



Gradient Boosted Trees
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Bagging vs Boosting
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Bootstrapping
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Ensemble Learning
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Ensemble learning

Aggregating a group of classifiers (“base classifiers”) as an ensemble
committee and making the prediction by consensus.

Weak learner ensembles (each base learner has high EPE, but is easy to
train):
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Fig. 1: Schematic illustration of the three popular ensemble methods.

Current Bioinformatics, 5, (4):296-308, 2010.



Types of Ensemble Learning
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Types of Ensemble Learning

Diverse set
of
Algonthms

Same
algorithm for
svery

predictor on
differant
instances

Same
algonthm on
diverse set of

features &
instances

Dinesh Varma Indukun



Machine Learning Frameworks

Top 8 Deep Learning
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Machine Learning Frameworks

Deep Learning Pipeline
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Machine Learning Frameworks
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