Al Algorithms – 1: Intro to Al Algorithms

- Sayed Ahmed
- PhD Studies in Electrical and Computer Eng. (McMaster University) (Partially Complete)
- Master of Engineering in Electrical and Computer Engineering (McMaster University)
- MSc in Data Science and Analytics (Toronto Metropolitan University/Ryerson)
- MSc in Computer Science (U of Manitoba)
- BSc. Engineering in Computer Science and Engineering (BUET)
- Extensive experience in Software Development and Engineering (primarily in Canada)
- · Significant experience in Teaching
- Taught in Universities, Colleges, and Training Institutes

Machine Learning Algorithms

Decision Tree and Classification

Decision Tree and Regression

Regression and Decision Trees

Supervised Learning

Underfit, Overfit, Optimal Fit

Decision Tree Approaches

Tree Uses Nodes, and Leaves

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Decision Tree, Node Types

Node Types

Pros and Cons: Decision Trees

Decision Tree Pros and Cons

Pros

- No data assumptions
- Non-linear
- Discontinuous

Cons

- No extrapolation
- Need substantial amount of data
- Not descriptive

Decision Trees vs Random Forest

	Decision Tree	Random Forest	
Interpretability	Easy to interpret	Hard to interpret	
Accuracy	Accuracy can vary	Highly accurate	
Overfitting	Likely to overfit data	Unlikely to overfit data	
Outliers	Can be highly affected by outliers	Robust against outliers	
Computation	Quick to build	Slow to build (computationally intensive)	

Random Forest

Random Forest

Random Forest

Random Forest Algorithms

Bagging Parallel

Boosting

Sequential

Bagging, Boosting, Stacking

	Bagging	Boosting	Stacking
Purpose	Reduce Variance	Reduce Bias	Improve Accuracy
Base Learner Types	Homogeneous	Homogeneous	Heterogeneous
Base Learner Training	Parallel	Sequential	Meta Model
Aggregation	Max Voting, Averaging	Weighted Averaging	Weighted Averaging

Ensemble Methods

Gradient Boosted Trees

Bagging vs Boosting

Bagging vs Boosting

Bootstrapping

Ensemble Learning

Ensemble learning

Aggregating a group of classifiers ("base classifiers") as an ensemble committee and making the prediction by consensus.

Weak learner ensembles (each base learner has high EPE, but is easy to train):

Google Images, Internet

Fig. 1: Schematic illustration of the three popular ensemble methods.

Current Bioinformatics, 5, (4):296-308, 2010.

Types of Ensemble Learning

Machine Learning Frameworks

Machine Learning Frameworks

Deep Learning Pipeline

Machine Learning Frameworks

