

Sayed Ahmed, Toronto, Canada

Linkedin: SayedJustetc
8112223 Canada Inc
JustEtc Social Services

Ref: Internet Images

BSc. Eng. in Computer Sc. & Eng.
MSc in Computer Science
MSc in Data Science and Analytics

Workplace Communication Program
Teach in Higher Education

Linkedin Learning
IBM Data Science/CognitiveAI
SkillSoft

T
ra
in
in
g
.S
ite
sT
re
e
.c
o
m

B
a
ng
la
.S
aL
ea
rn
in
gS
ch
o
ol
.c
om

Y
o

u
tu

b
e:

 S
aL

ea
rn

in
g

S
ch

o
o

l-
S

h
o

p
F

o
rS

o
u

l

S
h
op
F
or
S
ou
l.c
om

NLP – Natural Language Processing

 2

Youtube
Listen Faster/Slower

● Watch at 2x speed or 1.5x
speed

● Subscribe

 3

Misc

● Buy the courses
– https://ShopForSoul.com

– http://sitestree.com/training/

– http://bangla.salearningschool.com/

● Get access to our LMS

● Advantages
– Discussion
– Chat
– Live Sessions
– Select topics to create

videos on
– Q & A
– Free Courses

https://shopforsoul.com/training.html
http://sitestree.com/training/
http://bangla.salearningschool.com/

 4

Learn to Install NLTK

● How to install NLTK on your local machine
● Both sets of instructions below assume you already have Python installed. These instructions are taken directly from http://www.nltk.org/install.html.
●

● Mac/Unix
●

● From the terminal:
●

● Install NLTK: run pip install -U nltk
● Test installation: run python then type import nltk
● Windows
●

● Install NLTK: http://pypi.python.org/pypi/nltk
● Test installation: Start>Python35, then type import nltk
● Download NLTK data
● import nltk
● nltk.download()
● from nltk.corpus import stopwords
●

● stopwords.words('english')[0:500:25]
● ​

 5

● # NLP Basics: Reading in text data & why do we need to clean the text?
● # NLP Basics: Exploring the dataset
● # NLP Basics: Learning how to use regular expressions
● # NLP Basics: Implementing a pipeline to clean text
● Pre-processing text data
● Cleaning up the text data is necessary to highlight attributes that you're going to want

your machine learning system to pick up on. Cleaning (or pre-processing) the data
typically consists of a number of steps:

●

● Remove punctuation
● Tokenization
● Remove stopwords
● Lemmatize/Stem

 6

● # Supplemental Data Cleaning: Using Stemming
● import nltk: ps = nltk.PorterStemmer()

– print(ps.stem('grows'))
● # Supplemental Data Cleaning: Using a Lemmatizer

– Test out WordNet lemmatizer (read more about WordNet
here)

– import nltk, wn = nltk.WordNetLemmatizer(), ps =
nltk.PorterStemmer()

 7

● print(ps.stem('meanness'))
● # Vectorizing Raw Data: Count Vectorization
● ### Count vectorization
● Creates a document-term matrix where the entry of each cell will be a count of the

number of times that word occurred in that document.
● # Vectorizing Raw Data: N-Grams
● ### N-Grams
●

● Creates a document-term matrix where counts still occupy the cell but instead of the
columns representing single terms, they represent all combinations of adjacent words of
length n in your text.

●

● "NLP is an interesting topic"

 8

● # Vectorizing Raw Data: TF-IDF
● TF-IDF
● Creates a document-term matrix where the columns

represent single unique terms (unigrams) but the cell
represents a weighting meant to represent how
important a word is to a document.

●

 9

● # Feature Engineering: Feature Creation
● # Feature Engineering: Transformations
● Process
●

● Determine what range of exponents to test
● Apply each transformation to each value of your chosen

feature
● Use some criteria to determine which of the

transformations yield the best distribution

 10

● # Building Machine Learning Classifiers: Building a
basic Random Forest model

● # Building Machine Learning Classifiers: Random
Forest on a holdout test set

● Explore RandomForestClassifier through Holdout Set
● from sklearn.metrics import

precision_recall_fscore_support as score
● from sklearn.model_selection import train_test_split
●

 11

● Building Machine Learning Classifiers: Explore Random Forest model with
grid-search

● Grid-search: Exhaustively search all parameter combinations in a given
grid to determine the best model

● Building Machine Learning Classifiers: Evaluate Random Forest with
GridSearchCV

● Grid-search: Exhaustively search all parameter combinations in a given
grid to determine the best model.

●

● Cross-validation: Divide a dataset into k subsets and repeat the holdout
method k times where a different subset is used as the holdout set in
each iteration.

 12

● Building Machine Learning Classifiers: Explore Gradient Boosting model with
grid-search

● Grid-search: Exhaustively search all parameter combinations in a given grid to
determine the best model.

● Explore GradientBoostingClassifier Attributes & Hyperparameters
● Building Machine Learning Classifiers: Evaluate Gradient Boosting with

GridSearchCV
● Grid-search: Exhaustively search all parameter combinations in a given grid to

determine the best model.
●

● Cross-validation: Divide a dataset into k subsets and repeat the holdout method
k times where a different subset is used as the holdout set in each iteration.

 13

● Building Machine Learning Classifiers: Model
selection

● Read in & clean text
● Building Machine Learning Classifiers: Model

selection

 14

Deep

 15

● Word Encodings¶
● The notebooks explains the implementation of word

encodings in NLP using the tensorflow library.
● Creating sequences of tokens
● The notebook covers the creation of sequences of tokens

from words in a sentence.
●

● from tensorflow.keras.preprocessing.text import Tokenizer
● from tensorflow.keras.preprocessing.text import Tokenizer

 16

● Padding the sequences
● The notebook explains how to manipulate sequences to

make them of equal length using padding.
●

● Import the APIs
● ##import the required APIs
● from tensorflow.keras.preprocessing.text import Tokenizer
● from tensorflow.keras.preprocessing.sequence import

pad_sequences

 17

● Sentiment Analysis - Tokenizing news headlines for data preparation!¶
● The notebook covers the data preparation step by tokenizing the headlines and creating

padded sequences of news headlines.
●

● Data preparation include the following steps:
●

● Download and read the data
● Segregate the headlines and their labels.
● Tokenize the headlines
● Create sequences and add padding.
● 1. Download and read the news headlines data
● This is a kaggle dataset which is further corrected and then hosted on Google Cloud

Storage.

 18

● Word Embeddings for Sentiment Analysis¶
● This notebook explains an introduction to word embeddings. We will train our own

word embeddings using a simple Keras model for a sentiment classification task.
●

● Steps include:
●

● Downloading data from tensorflow dataset.
● Segregating training and testing sentences & labels.
● Data preparation to padded sequences
● Defining out Keras model with an Embedding layer.
● Train the model and explore the weights from the embedding layer.

 19

● Projecting embeddings on TensorFlow projector
● This notebook explains how you can write the vectors

of an embeddings into a TSV file to visualise it in a
3D space on the TensorFlow projector

●

 20

● Classifying News Headlines¶
● This notebook explains the classification of news

headlines as sarcastic and non-sarcastic. We are using
the same headlines data as used before.

● -
● Text Classification challenge¶
● You are required to train a deep learning model on the

IMDB reviews dataset and classify a set of new reviews
as positive(1) or negative(0) using the trained model.

 21

● Text Classification challenge
● You are required to train a deep learning model on the IMDB

reviews dataset and classify a set of new reviews as
positive(1) or negative(0) using the trained model.

● ---
● Implementing LSTMs using TensorFlow¶
● This notebook walks you through the implementation of an

LSTM model to classify news headlines as sarcastic or
not_sarcastic. We will analyse the accuracy & loss curves for
training and validation sets.

 22

● Improving the performance of the Text Classifier with CNN
● This notebook covers tries to explore the CNN model by replacing

the LSTM model implemented in the previous video. We'll compare
the accuracy and loss for a CNN model on the same headlines
data.

● ---
● Yelp Review Classifier
● This notebook serves as a challenge to implement and explore

LSTM and Convolution model over the new Yelp review dataset.
You have to fill up all the blanks with the hyperparameters that
helps you get the best accuracy and loss.

 23

● Explore the LSTM & CNN model with the following
layers:

● Embedding layer
● Try two bidirectional LSTM layers or a Conv1D layer

or both.
● Dense layer with 24 nodes
● Output Dense layer with sigmoid activation

 24

● Introduction to Text generation¶
● This notebook explains how we can split a given corpus of data into features

and labels and then train a neural network to predict the next word in a
sentence.

●

● Create a corpus - break the text down to list of sentences.
● Create a word_index(vocabulary) from the text.
● Tokenize the data and create n-gram sequence for each sequence of the

corpus.
● Pad those sequences.
● Segregate features from the sequences by reserving the last element of the

array as labels.

 25

● Poetry generation challenge¶
● This notebook serves as a challenge on how to create

poetry like Shakespeare by leveraging RNNs(LSTMs).
We'll be using the Shakerpeare poetry as the training
data and then use the trained network to predict the
next words.

 26

tensorflow-working-with-nlp---tensorflow-
working-with-nlp-2439112-main

 27

● NLP use cases
●

● Classifying whole sentences
● Classifying each word in a sentence
● Answering a question
● Text summarization
● Fill in the blanks
● Translating from one language to another

 28

● Challenge: NLP model size¶
● How many parameters does the BERT base uncased model

have? Use the get_model_size function below to help you.
● If you know the number of parameters for a model, how

might you be able to determine how much memory is
required when running a model inference?

● If you wanted to run a GPT-3 175 billion inference. How
much RAM would your infrastructure require.

● This should take you between 5-10 minutes

 29

 30

Another Set of Problems for Assignments

 31

NLP Problems (Assignments) to Solve

● Regular expression to extract data and information from text
● Tokenization using NLTK or similar

– Word token
– Sentence tokenization
– Utilize regular expression

● Lemmatization using NLTK
● Stemming using NLTK or similar
● Remove stopwords from text

– Then tokenize
– Do lemmatization and stemming after stop word removal

 32

NLP Problems (Assignments) to Solve

● NLP: Write code to remove punctuations from text.
● NLTK: Take stop words list from library. Add your own stop words to the

list
– Then remove stop words from a text

● Write N-Gram (Bi Gram, Trigram) code using frequence as the measure
● Write N-Gram (Bi Gram, Trigram) code using collocated words as the

measure
– What are collation words
– Find a library method or a 3rd party implementation, use it as well
– Compare your output with the library/3rd party one
– Print top few N-grams

 33

NLP Problems (Assignments) to Solve

● Find about NLTK
methods/features such as
– ngram_fd
– ngram_fd.items()
– dir(trigrams)
– help(trigrams.ngram_fd)
– nbest
– TrigramAssocMeasures

● raw_freq
● help(TrigramAssocMeasures)

● NLTK features for
– MLE (Maximum Likelihood Estimate) and

Laplace smoothing
● Implement

– trigrams based smoothing using Laplace and
Kneser Ney algorthms

● Implement
– Laplace smoothing

● Bigram, trigram

– Measure the preplexity
– Measure prepexity as

● a) Logbase2Prob= Sum-for-all-
trigrams(log2(P(w3|w1,w2)) (b)Ent=(-1/tokens-in-
test)x Logbase2Prob (c) Power(2, (ent))

 34

● Write a program to predict the next few words
– Based on bi-gram and tri-gram
– Based on a sample text
– Use train and test approach

● Study this implementation
– https://github.com/smilli/kneser-ney
– Utilize utenberg corpus is required

●

NLP Problems (Assignments) to Solve

https://github.com/smilli/kneser-ney

 35

NLP Problems (Assignments) to Solve

● Using Penn Treebank, do POS tagging to a text
– http://www.ling.upenn.edu/courses/Fall_2003/ling001/

penn_treebank_pos.html
● Find out what are these

– Treebank corpus and Brown corpus
– Can you use these for the POS tagging task above

● Write short essay on
– Chunk grammar
– http://www.nltk.org/book/ch07.html.
–

 36

NLP Problems (Assignments) to Solve

● From some example text
– extract three different chunks of your choice: e.g., co-

ocurrences of adjectives and nouns, co-occurences of
determiner, adjectives and nouns, extractions of all types
of nouns, etc.

– Learn on how to train a custom tagger at
● http://www.nltk.org/book/ch05.htm

● Train an HMM model on the sentences of Brown
corpus. Find out the accuracy of your trained HMM
model on the sentences in test data

http://www.nltk.org/book/ch05.htm

 37

NLP Problems (Assignments) to Solve

● Use NLTK's tagger to predict the tags and determine
accuracy of prediction.

● Read on
– Maximum Entropy Classifier (MaxEnt)
– Why MaxEnt is highly accurate

● Read on a decision tree classifier for POS tagging.
– http://nlpforhackers.io/training-pos-tagger/

 38

NLP Problems (Assignments) to Solve

● Classify text using
– Naive Bayes

● Use movie data from here and classify the reviwes to be positive or
negative. Use train and test
– http://ai.stanford.edu/~amaas/data/sentiment/
– load_files scikit-learn
– CountVectorizer

● Modify the above implementation
– Get rid of the words occuring in more than 1000 documents

● Redo the above implementation after modifying the text
– Such as add Not when you see a negative word, and till the first punctuation

http://ai.stanford.edu/~amaas/data/sentiment/

 39

NLP Problems (Assignments) to Solve

● Use the sentiment lexicon below
– http://sentiment.christopherpotts.net/lexicons.html
– Create two features

● Positive words count
● Negative words count

● Filter out some words using POS tagging
– Keep adjectives, verbs, and nouns
– And then try the sentiment analysis
– i.e. text classification

http://sentiment.christopherpotts.net/lexicons.html

 40

NLP Problems (Assignments) to Solve

● Try this example on Neural Network and text classification
– https://machinelearningmastery.com/tutorial-first-neural-

network-python-keras/ (another beginner tutorial)
– Try to improve the accuracy

● Train a Neural network with embedding
– Use the IMDB database as above
– For text classification
– Measure the performance and compare the result with Naive

Bayes

 41

NLP Problems (Assignments) to Solve

● Repeat the text classification after replacing negative
words wit
– NOT

● Glove: https://nlp.stanford.edu/projects/glove/
● Pretrained word to dense vectors
● Use glove for a multi-label classification problem
● Use glove and build a binary classifier

– Pick one of the toxicity columns as the class
– Classification for Wikipedia comments

https://nlp.stanford.edu/projects/glove/

 42

NLP Problems (Assignments) to Solve

● “Make a binary classifier for each class, and assign
multiple labels (classes) to each test record. Evalute
your accuracy for multiple classes. This is little more
work but is more rewarding as a learning
experience.”
– Use Glove
– And wikipedia comments

 43

NLP Problems (Assignments) to Solve

● Try the name entiry recognition information and example
– https://www.depends-on-the-definition.com/sequence-tagging-lstm-

crf/
– https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus/vers

ion/4#ner_dataset.csv
● Create a Bi-directional LSTM (RNN)

– For Name Entity Recognition
● Modify the NER example using

– Glove
● Concatenate each word with POS tagging

– And then adjust the LSTM/RNN for NER

https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus/version/4#ner_dataset.csv
https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus/version/4#ner_dataset.csv

 44

NLP Problems (Assignments) to Solve

● Implement Knee/Elbow method of text clustering
● Determine purity of clusters
● Utilize Bernoulli mixture model of clustering
● Explain the Bernoulli mixture model of clustering

model as can be seen in
– https://github.com/manfredzab/bernoulli-mixture-models
– https://github.com/schwannden/MNIST_mixture-of-

bernoulli

https://github.com/manfredzab/bernoulli-mixture-models

 45

NLP Problems (Assignments) to Solve

● Gaussian Mixture models of clustering
– http://scikit-learn.org/stable/modules/mixture.html#mixtu

re
● Implement LDA topic modeling algorithm

– Utilize train/test
● Implement PLSA topic modeling algorithm
● Utilize PLSA topic modeling algorithm from Scikit-

learn and apply on a dataset
●

http://scikit-learn.org/stable/modules/mixture.html#mixture
http://scikit-learn.org/stable/modules/mixture.html#mixture

 46

NLP Problems (Assignments) to Solve

● Read the Topic Modeling blog at
– https://nlpforhackers.io/topic-modeling/

● Implement
– CountVectorizer (Freq)

● Take a set of text/articles/news
– Train LDA on the data and find the top topics
– Apply EM if applicable

● Implement PLSA topic modeling algorithm
– TruncatedSVD

● Modify the code in the URL to get rid of noise from the tokens. Remove
*,/,-,=,,_ or similar

●

https://nlpforhackers.io/topic-modeling/

 47

NLP Problems (Assignments) to Solve

● Implement LDA and PLSA
– And apply on some Gutenberg project data
– Find the topics

● Use LDA, PLSA to find topics
– Use these topics as features for Naive Bayes
– Then implement a Naive Bayes classifier
– Find: accuracy, precision and recall

 48

NLP Problems (Assignments) to Solve

● Read on Gensim
– https://radimrehurek.com/gensim/models/ldamodel.html
– Implement LDA
– Use alpha and beta
– Use Gensim

https://radimrehurek.com/gensim/models/ldamodel.html

 49

NLP Problems (Assignments) to Solve

● Implement Textrank algorithm
– Use Gensim

● Take articles from the Internet
– Implement text summarization
– Implement keyword extraction using Gensim

● Implement Naive Bayes classifier as below
– Find 100 key phrases/keywords from each document/review
– Merge these keywords and
– Filter these keywords from the documents
– Then with the remaining data train and implement Naive Bayes

● Calculate accuracy, precision, and recall

● Implement ROUGE metric for text summarization
– “ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software

package used for evaluating automatic summarization and machine translation software in natural
language processing” Wikipedia

 50

 51

 52

 53

 54

 55

 56

 57

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

